Curvature Homogeneous Manifolds in Dimension 4
نویسندگان
چکیده
منابع مشابه
ul 2 00 4 Harmonic homogeneous manifolds of nonpositive curvature
A Riemannian manifold is called harmonic if its volume density function expressed in polar coordinates centered at any point of the manifold is radial. Flat and rank-one symmetric spaces are harmonic. The converse (the Lichnerowicz Conjecture) is true for manifolds of nonnegative scalar curvature and for some other classes of manifolds, but is not true in general: there exists a family of homog...
متن کاملHomogeneous symplectic manifolds with Ricci - type curvature
We consider invariant symplectic connections ∇ on homogeneous symplectic manifolds (M, ω) with curvature of Ricci type. Such connections are solutions of a variational problem studied by Bourgeois and Cahen, and provide an integrable almost complex structure on the bundle of almost complex structures compatible with the symplectic structure. If M is compact with finite fundamental group then (M...
متن کاملOn curvature homogeneous 4D Lorentzian manifolds
We prove that a four-dimensional Lorentzian manifold that is curvature homogeneous of order 3, or CH3 for short, is necessarily locally homogeneous. We also exhibit and classify four-dimensional Lorentzian, CH2 manifolds that are not homogeneous. PACS numbers: 04.20, 02.40 AMS classification scheme numbers: 53C50
متن کاملComplete k-Curvature Homogeneous Pseudo-Riemannian Manifolds
For k 2, we exhibit complete k-curvature homogeneous neutral signature pseudoRiemannian manifolds which are not locally affine homogeneous (and hence not locally homogeneous). All the local scalar Weyl invariants of these manifolds vanish. These manifolds are Ricci flat, Osserman, and Ivanov–Petrova. Mathematics Subject Classification (2000): 53B20.
متن کاملAlgebras of Curvature Forms on Homogeneous Manifolds
Let C(X) be the algebra generated by the curvature two-forms of standard holomorphic hermitian line bundles over the complex homogeneous manifold X = G/B. The cohomology ring of X is a quotient of C(X). We calculate the Hilbert polynomial of this algebra. In particular, we show that the dimension of C(X) is equal to the number of independent subsets of roots in the corresponding root system. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Geometric Analysis
سال: 2021
ISSN: 1050-6926,1559-002X
DOI: 10.1007/s12220-020-00566-0